Research ArticleAPPLIED PHYSICS

Super-resolution nanoscopy by coherent control on nanoparticle emission

See allHide authors and affiliations

Science Advances  17 Apr 2020:
Vol. 6, no. 16, eaaw6579
DOI: 10.1126/sciadv.aaw6579

Abstract

Super-resolution nanoscopy based on wide-field microscopic imaging provided high efficiency but limited resolution. Here, we demonstrate a general strategy to push its resolution down to ~50 nm, which is close to the range of single molecular localization microscopy, without sacrificing the wide-field imaging advantage. It is done by actively and simultaneously modulating the characteristic emission of each individual emitter at high density. This method is based on the principle of excited state coherent control on single-particle two-photon fluorescence. In addition, the modulation efficiently suppresses the noise for imaging. The capability of the method is verified both in simulation and in experiments on ZnCdS quantum dot–labeled films and COS7 cells. The principle of coherent control is generally applicable to single-multiphoton imaging and various probes.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances