Research ArticleOPTICS

Fully stabilized multi-TW optical waveform synthesizer: Toward gigawatt isolated attosecond pulses

See allHide authors and affiliations

Science Advances  17 Apr 2020:
Vol. 6, no. 16, eaay2802
DOI: 10.1126/sciadv.aay2802

Abstract

A stable 50-mJ three-channel optical waveform synthesizer is demonstrated and used to reproducibly generate a high-order harmonic supercontinuum in the soft x-ray region. This synthesizer is composed of pump pulses from a 10-Hz repetition-rate Ti:sapphire pump laser and signal and idler pulses from an infrared two-stage optical parametric amplifier driven by this pump laser. With full active stabilization of all relative time delays, relative phases, and the carrier-envelope phase, a shot-to-shot stable intense continuum harmonic spectrum is obtained around 60 eV with pulse energy above 0.24 μJ. The peak power of the soft x-ray continuum is evaluated to be beyond 1 GW with a 170-as transform limit duration. We found a characteristic delay dependence of the multicycle waveform synthesizer and established its control scheme. Compared with the one-color case, we experimentally observe an enhancement of the cutoff spectrum intensity by one to two orders of magnitude using three-color waveform synthesis.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances