Research ArticleCELL BIOLOGY

A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation

See allHide authors and affiliations

Science Advances  17 Apr 2020:
Vol. 6, no. 16, eaaz9899
DOI: 10.1126/sciadv.aaz9899

Abstract

Cyclin-dependent kinase 2 (CDK2) controls cell division and is central to oncogenic signaling. We used an “in situ” approach to identify CDK2 substrates within nuclei isolated from cells expressing CDK2 engineered to use adenosine 5′-triphosphate analogs. We identified 117 candidate substrates, ~40% of which are known CDK substrates. Previously unknown candidates were validated to be CDK2 substrates, including LSD1, DOT1L, and Rad54. The identification of many chromatin-associated proteins may have been facilitated by labeling conditions that preserved nuclear architecture and physiologic CDK2 regulation by endogenous cyclins. Candidate substrates include proteins that regulate histone modifications, chromatin, transcription, and RNA/DNA metabolism. Many of these proteins also coexist in multi-protein complexes, including epigenetic regulators, that may provide new links between cell division and other cellular processes mediated by CDK2. In situ phosphorylation thus revealed candidate substrates with a high validation rate and should be readily applicable to other nuclear kinases.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances