Abstract
The rising prevalence of antibiotic resistance underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) are potentially effective therapeutics that disrupt bacterial membranes regardless of resistance to traditional antibiotics. We have developed engineered cationic AMPs (eCAPs) with broad activity against multidrug-resistant (MDR) bacteria, but stability remains an important concern. Therefore, we sought to enhance the clinical utility of eCAP WLBU2 in biological matrices relevant to respiratory infection. A designed substitution of d-Val for l-Val resulted in increased resistance to protease enzymatic degradation. We observed multiple gains of functions such as higher activity against bacteria in biofilm mode of growth, significantly lower toxicity to erythrocytes and white blood cells compared to WLBU2, with increased safety in mice. Direct airway delivery revealed a therapeutic index of >140 for the selected enantiomer compared to that of <35 for WLBU2. The data warrant clinical exploration by aerosolized delivery to mitigate MDR-related respiratory infection.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.