Vanadium spin qubits as telecom quantum emitters in silicon carbide

See allHide authors and affiliations

Science Advances  01 May 2020:
Vol. 6, no. 18, eaaz1192
DOI: 10.1126/sciadv.aaz1192


Solid-state quantum emitters with spin registers are promising platforms for quantum communication, yet few emit in the narrow telecom band necessary for low-loss fiber networks. Here, we create and isolate near-surface single vanadium dopants in silicon carbide (SiC) with stable and narrow emission in the O band, with brightness allowing cavity-free detection in a wafer-scale material. In vanadium ensembles, we characterize the complex d1 orbital physics in all five available sites in 4H-SiC and 6H-SiC. The optical transitions are sensitive to mass shifts from local silicon and carbon isotopes, enabling optically resolved nuclear spin registers. Optically detected magnetic resonance in the ground and excited orbital states reveals a variety of hyperfine interactions with the vanadium nuclear spin and clock transitions for quantum memories. Last, we demonstrate coherent quantum control of the spin state. These results provide a path for telecom emitters in the solid state for quantum applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances