Research ArticleAPPLIED SCIENCES AND ENGINEERING

Attenuated diphtheria toxin mediates siRNA delivery

See allHide authors and affiliations

Science Advances  01 May 2020:
Vol. 6, no. 18, eaaz4848
DOI: 10.1126/sciadv.aaz4848

Abstract

Toxins efficiently deliver cargo to cells by binding to cell surface ligands, initiating endocytosis, and escaping the endolysosomal pathway into the cytoplasm. We took advantage of this delivery pathway by conjugating an attenuated diphtheria toxin to siRNA, thereby achieving gene downregulation in patient-derived glioblastoma cells. We delivered siRNA against integrin-β1 (ITGB1)—a gene that promotes invasion and metastasis—and siRNA against eukaryotic translation initiation factor 3 subunit b (eIF-3b)—a survival gene. We demonstrated mRNA downregulation of both genes and the corresponding functional outcomes: knockdown of ITGB1 led to a significant inhibition of invasion, shown with an innovative 3D hydrogel model; and knockdown of eIF-3b resulted in significant cell death. This is the first example of diphtheria toxin being used to deliver siRNAs, and the first time a toxin-based siRNA delivery strategy has been shown to induce relevant genotypic and phenotypic effects in cancer cells.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances