EditorialCOVID-19

Surviving COVID-19: A disease tolerance perspective

See allHide authors and affiliations

Science Advances  29 Apr 2020:
Vol. 6, no. 18, eabc1518
DOI: 10.1126/sciadv.abc1518

Janelle S. Ayres

In December 2019, an epidemic of pneumonia of unknown cause emerged in Wuhan, China. In early January 2020, a virus was sequenced and identified as a novel coronavirus named SARS-CoV-2, the causative agent of COVID-19. By March 2020, the World Health Organization (WHO) declared the outbreak a pandemic with current numbers reaching over 1 million individuals infected and approximately 75,000 deaths globally. There has always been a disconnect between our methods for treating infectious diseases and our understanding of the mechanisms that promote the survival of infections (1). This global pandemic has underscored the necessity to understand how it is that we survive infections and why this may be different from the ways we often think about the treatment of infectious diseases.

A successful response to any infectious disease outbreak requires a multipronged approach. With COVID-19, governments are enforcing unprecedented quarantines and social distancing measures to facilitate the containment and reduce transmission of the virus, efforts that are proving to be effective. Scientists from private and public sectors are racing to identify a successful vaccine, which will be essential for the prevention of future infections and mortalities, thereby reducing pressures on the healthcare system, economy, and society. Where these efforts fall short are with the current approaches for developing treatments for those that are sick with and dying from a COVID-19 infection. The current potential COVID-19 treatments being tested include antivirals already in use for HIV, antimalarial drugs and other compounds that may prevent viral replication, and convalescent serum. The WHO has a similar focus on identification of therapies that destroy the virus with their launch of the SOLIDARITY trial that is streamlining the testing of multiple antiviral strategies that may be effective against COVID-19 (2). The unifying …

View Full Text

Stay Connected to Science Advances