Research ArticleMATERIALS SCIENCE

Three-dimensional self-assembly using dipolar interaction

See allHide authors and affiliations

Science Advances  08 May 2020:
Vol. 6, no. 19, eaba2007
DOI: 10.1126/sciadv.aba2007
  • Fig. 1 The self-assembly experiment.

    (A) 3D printed polymer objects with embedded permanent magnets were inserted in a transparent cylinder with an upward flow. The flow counteracts the drop velocity of the objects, and the flow’s turbulence provides a disturbing force. A tapered transparent insert was used to provide a gradient in the flow velocity, which ensured that the objects levitate in front of the video cameras. (B) Spherical objects form linear chains. When eight spheres are inserted in the flow, the most stable configuration is a circle, which has 10% lower energy than a linear chain (C). Photo credit: L. Abelmann (Saarland University and University of Twente).

  • Fig. 2 3D self-assembly of dipoles.

    (A) Equally spaced dipoles prefer parallel alignment (black arrows). By elongating the shape of the shell around the dipoles, we can favor the antiparallel configuration, so that plates of objects assemble. When the energy of the parallel and antiparallel configuration is exactly equal, we expect 3D crystals. (B) This strategy works best with cylindrical objects. From left to right, we varied the shape so that the energy of the parallel configuration is twice (left), half (center), and exactly equal (right) to that of the antiparallel configuration. The red encircled assembly of cylinders (middle row) is a regular 3D 2 by 2 by 2 cluster. The cylindrical objects in the second row reproduced the plate prediction of (A). The spheroids (top row) and the cubes (bottom row) exhibited line structures in the first column but more complex behavior when their shape was adjusted.

Supplementary Materials

Stay Connected to Science Advances

Navigate This Article