Research ArticleECOLOGY

Lidar reveals activity anomaly of malaria vectors during pan-African eclipse

See allHide authors and affiliations

Science Advances  13 May 2020:
Vol. 6, no. 20, eaay5487
DOI: 10.1126/sciadv.aay5487


Yearly, a quarter billion people are infected and a half a million killed by the mosquito-borne disease malaria. Lack of real-time observational tools for continuously assessing the unperturbed mosquito flight activity in situ limits progress toward improved vector control. We deployed a high-resolution entomological lidar to monitor a half-kilometer static transect adjacent to a Tanzanian village. We evaluated one-third million insect observations during five nights, four days, and one annular solar eclipse. We demonstrate in situ lidar classification of several insect families and their sexes based on their modulation signatures. We were able to compare the fine-scale spatiotemporal activity patterns of malaria vectors during ordinary days and an eclipse to disentangle phototactic activity patterns from the circadian mechanism. We observed an increased insect activity during the eclipse attributable to mosquitoes. These unprecedented findings demonstrate how lidar-based monitoring of distinct mosquito activities could advance our understanding of vector ecology.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances