Lead-free (Ag,K)NbO3 materials for high-performance explosive energy conversion

See allHide authors and affiliations

Science Advances  20 May 2020:
Vol. 6, no. 21, eaba0367
DOI: 10.1126/sciadv.aba0367


Explosive energy conversion materials with extremely rapid response times have broad and growing applications in energy, medical, defense, and mining areas. Research into the underlying mechanisms and the search for new candidate materials in this field are so limited that environment-unfriendly Pb(Zr,Ti)O3 still dominates after half a century. Here, we report the discovery of a previously undiscovered, lead-free (Ag0.935K0.065)NbO3 material, which possesses a record-high energy storage density of 5.401 J/g, enabling a pulse current ~ 22 A within 1.8 microseconds. It also exhibits excellent temperature stability up to 150°C. Various in situ experimental and theoretical investigations reveal the mechanism underlying this explosive energy conversion can be attributed to a pressure-induced octahedral tilt change from aac+ to aac/aac+, in accordance with an irreversible pressure-driven ferroelectric-antiferroelectric phase transition. This work provides a high performance alternative to Pb(Zr,Ti)O3 and also guidance for the further development of new materials and devices for explosive energy conversion.

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances