Research ArticleCANCER

Phenotype stability under dynamic brain-tumor environment stimuli maps glioblastoma progression in patients

See allHide authors and affiliations

Science Advances  27 May 2020:
Vol. 6, no. 22, eaaz4125
DOI: 10.1126/sciadv.aaz4125


Although tumor invasiveness is known to drive glioblastoma (GBM) recurrence, current approaches to treatment assume a fairly simple GBM phenotype transition map. We provide new analyses to estimate the likelihood of reaching or remaining in a phenotype under dynamic, physiologically likely perturbations of stimuli (“phenotype stability”). We show that higher stability values of the motile phenotype (Go) are associated with reduced patient survival. Moreover, induced motile states are capable of driving GBM recurrence. We found that the Dormancy and Go phenotypes are equally represented in advanced GBM samples, with natural transitioning between the two. Furthermore, Go and Grow phenotype transitions are mostly driven by tumor-brain stimuli. These are difficult to regulate directly, but could be modulated by reprogramming tumor-associated cell types. Our framework provides a foundation for designing targeted perturbations of the tumor-brain environment, by assessing their impact on GBM phenotypic plasticity, and is corroborated by analyses of patient data.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances