Research ArticleOPTICS

White nanolight source for optical nanoimaging

See allHide authors and affiliations

Science Advances  03 Jun 2020:
Vol. 6, no. 23, eaba4179
DOI: 10.1126/sciadv.aba4179


Nanolight sources, which are based on resonant excitation of plasmons near a sharp metallic nanostructure, have attracted tremendous interest in the vast research fields of optical nanoimaging. However, being a resonant phenomenon, this ideally works only for one wavelength that resonates with the plasmons. Multiple wavelengths of light in a broad range confined to one spot within a nanometric volume would be an interesting form of light, useful in numerous applications. Plasmon nanofocusing can generate a nanolight source through the propagation and adiabatic compressions of plasmons on a tapered metallic nanostructure, which is independent of wavelength, as it is based on the propagation, rather than resonance, of plasmons. Here, we report the generation of a white nanolight source spanning over the entire visible range through plasmon nanofocusing and demonstrate spectral bandgap nanoimaging of carbon nanotubes. Our experimental demonstration of the white nanolight source would stimulate diverse research fields toward next-generation nanophotonic technologies.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances