Strain rate–dependent mechanical metamaterials

See allHide authors and affiliations

Science Advances  17 Jun 2020:
Vol. 6, no. 25, eaba0616
DOI: 10.1126/sciadv.aba0616


Mechanical metamaterials are usually designed to exhibit novel properties and functionalities that are rare or even unprecedented. What is common among most previous designs is the quasi-static nature of their mechanical behavior. Here, we introduce a previously unidentified class of strain rate-dependent mechanical metamaterials. The principal idea is to laterally attach two beams with very different levels of strain rate-dependencies to make them act as a single bi-beam. We use an analytical model and multiple computational models to explore the instability modes of such a bi-beam construct, demonstrating how different combinations of hyperelastic and viscoelastic properties of both beams, as well as purposefully introduced geometric imperfections, could be used to create robust and highly predictable strain rate-dependent behaviors of bi-beams. We then use the bi-beams to design and experimentally realize lattice structures with unique strain rate-dependent properties including switching between auxetic and conventional behaviors and negative viscoelasticity.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances