Research ArticleAPPLIED SCIENCES AND ENGINEERING

An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment

See allHide authors and affiliations

Science Advances  17 Jun 2020:
Vol. 6, no. 25, eaba9381
DOI: 10.1126/sciadv.aba9381
  • Fig. 1 Schematic showing the orthogonal regulation of DNA nanodevice for programmed tumor cell recognition and treatment.

    (A) The orthogonal photoactivation behavior of the DNA nanodevice in response to two NIR light of different wavelengths. (B) Sequential activation of the nanodevice with orthogonal UCL for programmed tumor recognition and PDT.

  • Fig. 2 Characterization of the nanodevice.

    (A and B) TEM (A) and high-angle annular dark-field scanning TEM (HAADF-STEM) (B) images of the core-multishell UCNPs. (C) TEM image of PT-UN. (D and E) UCL spectra of the core-multishell UCNPs upon excitation of 808 (D) and 980 nm (E). Inset is the schematic illustration of UCL in response to different NIR excitation. (F) Relative fluorescence intensity of fluorescence resonance energy transfer (FRET) pair–labeled PT-UN and nPT-UN with or without 808-nm irradiation as a function of irradiation time. (G) UCL spectrum of the UCNPs under 980-nm excitation and UV-visible absorption (Abs.) spectrum of RB PSs. (H) UCL spectra of PT-UN before and after loading with RB under 980-nm NIR light excitation. (I) Normalized absorbance of 1,3-diphenylisobenzofuran (DPBF) in the presence of PT-UN upon different irradiations. a.u., arbitrary units.

  • Fig. 3 Orthogonally regulated cell recognition and photodynamic effect in vitro.

    (A) CLSM images of 4T1 cells with indicated treatments. Scale bars, 20 μm. (B) Flow cytometric quantification of the fluorescence intensity of 4T1 cells, with different treatments. Data are means ± SD (n = 3). (C) CLSM images of 4T1 cells treated with PT-UN and 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA) upon different irradiation. Scale bars, 100 μm. (D) Cell viability of 4T1 cells treated with different concentrations of PT-UN and irradiation. Data are means ± SD (n = 3). (E) Cell viability of 4T1 cells with indicated treatments. Data are means ± SD (n = 3). (F) CLSM images of PT-UN–treated 4T1 cells with different irradiation, and then costained with calcein AM and propidium iodide (PI). Scale bars, 200 μm. (G) Flow cytometry analysis of cell apoptosis induced by PT-UN plus different irradiation using the annexin V/PI staining. Statistical significance was determined by two-tailed Student’s t test (B and E). ns, not significant; **P < 0.01; ***P < 0.001.

  • Fig. 4 Photoregulated tumor targeting in vivo.

    (A) Representative whole-body fluorescence images of 4T1 tumor–bearing mice injected intravenously with different samples without or with subsequent 808-nm NIR light irradiation at the tumor site. Tumors are indicated by red circles. (B) Intratumoral fluorescence in (A) as a function of time. Data are means ± SD (n = 5). (C) Intratumoral fluorescence in (A) 4 hours after injection. Data are means ± SD (n = 5). (D) Representative fluorescence images of ex vivo organs and tumors at 24 hours after injection. (E) The ratio of fluorescence intensity in tumors to that in livers for mice in (D). Data are means ± SD (n = 5). Statistical significance was determined by two-tailed Student’s t test (C and E). ns, not significant; **P < 0.01.

  • Fig. 5 Orthogonally regulated tumor treatment.

    (A) Tumor growth curves of mice with different treatments. Group 1, phosphate-buffered saline (PBS); group 2, PBS + 808 nm + 980 nm; group 3, nPT-UN; group 4, PT-UN; group 5, nPT-UN + 980 nm; group 6, PT-UN + 980 nm; group 7, nPT-UN + 808 nm + 980 nm; and group 8, PT-UN + 808 nm + 980 nm. Data are means ± SD (n = 5). Statistical significance was determined by one-way analysis of variance (ANOVA). **P < 0.01. (B) Final weight of tumors collected from mice after various treatments. Data are means ± SD (n = 5). Statistical significance was determined by two-tailed Student’s t test. ns, not significant; **P < 0.01. (C and D) Hematoxylin and eosin (H&E) (C) and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick end labeling (TUNEL) (D) staining of tumor sections collected from mice with indicated treatments. Scale bars, 100 (C) and 50 μm (D).

  • Fig. 6 Orthogonally regulated PT-UN for immunotherapy.

    (A) Schematic illustration of combining PT-UN(+) with α-PD-L1 therapy to inhibit tumor growth at both primary and distant sites. (B and C) Tumor growth curves of primary tumors (B) and distant tumors (C) of bilateral tumor-bearing mice with different treatments. Data are means ± SD (n = 5). (D) Weight of primary and distant tumors at the endpoint of the experiment. Data are means ± SD (n = 5). (E to G) The percentages of CD45+ leukocytes (CD45+PI) (E), CD8+ T cells (CD45+CD3e+CD8+PI) (F), and CD4+ T cells (CD45+CD3e+CD4+PI) (G) in total tumor cells in distant tumors. (H) Cytokine levels in sera of mice isolated 20 days after different treatments. Data are means ± SD (n = 5). Statistical significance was determined by two-tailed Student’s t test (B to H). *P < 0.05; **P < 0.01; ***P < 0.001.

Supplementary Materials

  • Supplementary Materials

    An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment

    Zhenghan Di, Bei Liu, Jian Zhao, Zhanjun Gu, Yuliang Zhao, Lele Li

    Download Supplement

    This PDF file includes:

    • Materials and instruments
    • Figs. S1 to S10

    Files in this Data Supplement:

Stay Connected to Science Advances

Navigate This Article