Abstract
Electronic applications are continuously developing and taking new forms. Foldable, rollable, and wearable displays are applicable for human health care monitoring or robotics, and their operation relies on organic light-emitting diodes (OLEDs). Yet, the development of semiconducting materials with high mechanical flexibility has remained a challenge and restricted their use in unusual format electronics. This study presents a wearable full-color OLED display using a two-dimensional (2D) material-based backplane transistor. The 18-by-18 thin-film transistor array was fabricated on a thin MoS2 film that was transferred to Al2O3 (30 nm)/polyethylene terephthalate (6 μm). Red, green, and blue OLED pixels were deposited on the device surface. This 2D material offered excellent mechanical and electrical properties and proved to be capable of driving circuits for the control of OLED pixels. The ultrathin device substrate allowed for integration of the display on an unusual substrate, namely, a human hand.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.