Abstract
Oceans host communities of plankton composed of relatively few abundant species and many rare species. The number of rare protist species in these communities, as estimated in metagenomic studies, decays as a steep power law of their abundance. The ecological factors at the origin of this pattern remain elusive. We propose that chaotic advection by oceanic currents affects biodiversity patterns of rare species. To test this hypothesis, we introduce a spatially explicit coalescence model that reconstructs the species diversity of a sample of water. Our model predicts, in the presence of chaotic advection, a steeper power law decay of the species abundance distribution and a steeper increase of the number of observed species with sample size. A comparison of metagenomic studies of planktonic protist communities in oceans and in lakes quantitatively confirms our prediction. Our results support that oceanic currents positively affect the diversity of rare aquatic microbes.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.