Abstract
Calcium homeostasis modulator 1 (CALHM1) is a voltage-gated ATP release channel that plays an important role in neural gustatory signaling and the pathogenesis of Alzheimer’s disease. Here, we present a cryo–electron microscopy structure of full-length Ca2+-free CALHM1 from Danio rerio at an overall resolution of 3.1 Å. Our structure reveals an octameric architecture with a wide pore diameter of ~20 Å, presumably representing the active conformation. The overall structure is substantially different from that of the isoform CALHM2, which forms both undecameric hemichannels and gap junctions. The N-terminal small helix folds back to the pore and forms an antiparallel interaction with transmembrane helix 1. Structural analysis revealed that the extracellular loop 1 region within the dimer interface may contribute to oligomeric assembly. A positive potential belt inside the pore was identified that may modulate ion permeation. Our structure offers insights into the assembly and gating mechanism of the CALHM1 channel.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.