Active microrheology of a bulk metallic glass

See allHide authors and affiliations

Science Advances  17 Jul 2020:
Vol. 6, no. 29, eaba8766
DOI: 10.1126/sciadv.aba8766


The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that might result in shear rejuvenation would require a prohibitively long relaxation time. Moreover, glass is well known to be heterogeneous, and a global perturbation would prevent exploration of local mechanical/transport properties. However, investigation based on a local probe, i.e., microrheology, may overcome these problems. Here, we establish active microrheology of a bulk metallic glass, via a probe particle driven into host medium glass. This technique is amenable to experimental investigations via nanoindentation tests. We provide distinct evidence of a strong relationship between the microscopic dynamics of the probe particle and the macroscopic properties of the host medium glass. These findings establish active microrheology as a promising technique for investigating the local properties of bulk metallic glass.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances