Research ArticleOPTICS

Molding free-space light with guided wave–driven metasurfaces

See allHide authors and affiliations

Science Advances  17 Jul 2020:
Vol. 6, no. 29, eabb4142
DOI: 10.1126/sciadv.abb4142


Metasurfaces with unparalleled controllability of light have shown great potential to revolutionize conventional optics. However, they mainly require external light excitation, which makes it difficult to fully integrate them on-chip. On the other hand, integrated photonics enables packing optical components densely on a chip, but it has limited free-space light controllability. Here, by dressing metasurfaces onto waveguides, we molded guided waves into any desired free-space modes to achieve complex free-space functions, such as out-of-plane beam deflection and focusing. This metasurface also breaks the degeneracy of clockwise- and counterclockwise-propagating whispering gallery modes in an active microring resonator, leading to on-chip direct orbital angular momentum lasing. Our study shows a viable route toward complete control of light across integrated photonics and free-space platforms and paves a way for creating multifunctional photonic integrated devices with agile access to free space, which enables a plethora of applications in communications, remote sensing, displays, etc.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances