Research ArticleChemistry

Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions

See allHide authors and affiliations

Science Advances  17 Jan 2020:
Vol. 6, no. 3, eaay2535
DOI: 10.1126/sciadv.aay2535
  • Fig. 1 Designed tricyclic source enables the access to tetracyclic aromatics with bridgehead metals by metalla-click reaction.

  • Fig. 2 Synthesis of polycyclic aromatics 2 and 3.

    (A) Designed fused osmacycle containing an M≡C bond enables metalla-click reactions with azides. (B) Molecular structure of the cation of 2′ (drawn with 50% probability). The phenyl moieties in PPh3 are omitted for clarity. (C) Molecular structure of the cation of 3c (drawn with 50% probability). The phenyl moieties in PPh3 are omitted for clarity.

  • Fig. 3 Energy profiles for cycloaddition reactions of 4-anisyl azide and osmapentalyne 2+ calculated at the PCM-B3LYP-D3BJ/6–311++G(d,p)-LANL2TZ level.

    The Gibbs free energies and selected bond lengths are given in kilocalories per mole and angstroms, respectively. The pathway for the formation of the 4-substituted product (3C+) is labeled in red, whereas that for the 2-substituted product (3c+) is labeled in blue.

  • Fig. 4 Aromaticity evaluation.

    (A) Nine key occupied perimeter π molecular orbitals (π-MOs) of the model complex 3′. The eigenvalues of the MOs are given in parentheses. (B) The aromaticity of model complex 3′ evaluated by the ISE method. The energies [in kilocalories per mole, computed with the B3LYP functional and the LanL2DZ basis set for Os and P and the 6 to 311++G(d,p) basis sets for C, O, N, and H] include zero-point energy corrections. (C) AICD plots of 3′ with the contribution from eight π-MOs. The molecular plane is placed perpendicular to the magnetic field vector. Isovalues for AICD isosurface is 0.025 arbitrary unit (a.u.). The diatropic ring currents indicate aromaticity.

  • Fig. 5 UV-Vis-NIR absorption spectra and photothermal properties.

    (A) The absorption spectra of 2 and 3a to 3e (5.0 × 10−5 M) measured in dichloromethane solution at room temperature. (B) Temperature elevation of the solvent and solutions of complex 3a at different concentrations (1.00, 0.50, 0.25, and 0.10 mg/ml) in 90% water-ethanol (v/v) solution upon laser irradiation (808 nm, 1 W/cm2).

  • Table 1 NICS(1) values (in parts per million) of the 4 five-membered rings of the 2-substituted model 3′ and the 4-substituted model 3″ calculated at the B3LYP/6–311++G(d,p) level.

    [Os]′ = Os(PH3)2.

    ModelNICSABCD
    Embedded ImageNICS(1)−3.7−10.9−9.9−7.3
    NICS(1)zz−5.4−24.8−21.3−16.2
    Embedded ImageNICS(1)−3.2−8.7−8.7−3.7
    NICS(1)zz−5.0−18.0−17.2−4.8

Supplementary Materials

  • Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/6/3/eaay2535/DC1

    Supplementary Information Text

    Synthetic Procedures

    Cartesian coordinate-optimized structures for calculation

    Fig. S1. 31P{1H} NMR spectrum of the starting material, complex 2, and the in situ 31P NMR spectra for the reaction of 2 with azide at room temperature.

    Fig. S2. ACID isosurface of the model 3′ from the contribution of eight π-MOs.

    Fig. S3. Positive-ion ESI-MS spectrum of [2]+ [C71H56O3OsP3]+ measured in dichloromethane.

    Fig. S4. Positive-ion ESI-MS spectrum of [2′]+ [C71H56O3OsP3]+ measured in dichloromethane.

    Fig. S5. Positive-ion ESI-MS spectrum of [3a]+ [C78H63N3O3OsP3]+ measured in dichloromethane.

    Fig. S6. Positive-ion ESI-MS spectrum of [3b]+ [C77H61N3O3OsP3]+ measured in dichloromethane.

    Fig. S7. Positive-ion ESI-MS spectrum of [3c]+ [C78H63N3O4OsP3]+ measured in dichloromethane.

    Fig. S8. Positive-ion ESI-MS spectrum of [3d]+ [C78H60F3N3O3OsP3]+ measured in dichloromethane.

    Fig. S9. Positive-ion ESI-MS spectrum of [3e]+ [C76H67N3O5OsP3]+ measured in dichloromethane.

    Fig. S10. 1H NMR (600.1 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 2.

    Fig. S11. 31P{1H} NMR (242.9 MHz, CD2Cl2) spectrum for complex 2.

    Fig. S12. 13C{1H} NMR (150.9 MHz, CD2Cl2) spectrum for complex 2.

    Fig. S13. Two-dimensional 1H-13C HSQC spectrum for complex 2 in CD2Cl2.

    Fig. S14. Two-dimensional 1H-13C HMBC spectrum for complex 2 in CD2Cl2.

    Fig. S15. DEPT-135 spectrum (150.9 MHz, CD2Cl2) of complex 2.

    Fig. S16. 1H NMR (600.1 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 2′.

    Fig. S17. 31P{1H} NMR (242.9 MHz, CD2Cl2) spectrum for complex 2′.

    Fig. S18. 13C{1H} NMR (150.9 MHz, CD2Cl2) spectrum for complex 2′.

    Fig. S19. Two-dimensional 1H-13C HSQC spectrum for complex 2′ in CD2Cl2.

    Fig. S20. Two-dimensional 1H-13C HMBC spectrum for complex 2′ in CD2Cl2.

    Fig. S21. DEPT-135 spectrum (150.9 MHz, CD2Cl2) of complex 2′.

    Fig. S22. 11B{1H} NMR (192.5 MHz, CD2Cl2) spectrum for complex 2′.

    Fig. S23. 1H NMR (500.2 MHz, CDCl3) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3a.

    Fig. S24. 31P{1H} NMR (202.5 MHz, CDCl3) spectrum for complex 3a.

    Fig. S25. 13C{1H} NMR (125.8 MHz, CDCl3) spectrum for complex 3a.

    Fig. S26. Two-dimensional 1H-13C HSQC spectrum for complex 3a in CDCl3.

    Fig. S27. Two-dimensional 1H-13C HMBC spectrum for complex 3a in CDCl3.

    Fig. S28. DEPT-135 spectrum (125.8 MHz, CDCl3) of complex 3a.

    Fig. S29. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3b.

    Fig. S30. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3b.

    Fig. S31. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3b.

    Fig. S32. Two-dimensional 1H-13C HSQC spectrum for complex 3b in CD2Cl2.

    Fig. S33. Two-dimensional 1H-13C HMBC spectrum for complex 3b in CD2Cl2.

    Fig. S34. DEPT-135 spectrum (125.8 MHz, CD2Cl2) of complex 3b.

    Fig. S35. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3c.

    Fig. S36. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3c.

    Fig. S37. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3c.

    Fig. S38. Two-dimensional 1H-13C HSQC spectrum for complex 3c in CD2Cl2.

    Fig. S39. Two-dimensional 1H-13C HMBC spectrum for complex 3c in CD2Cl2.

    Fig. S40. DEPT-135 spectrum (125.8 MHz) of complex 3c.

    Fig. S41. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3d.

    Fig. S42. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3d.

    Fig. S43. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3d.

    Fig. S44. 19F{1H} NMR (376.4 MHz, CD2Cl2) spectrum for complex 3d.

    Fig. S45. Two-dimensional 1H-13C HSQC spectrum for complex 3d in CD2Cl2.

    Fig. S46. Two-dimensional 1H-13C HMBC spectrum for complex 3d in CD2Cl2.

    Fig. S47. DEPT-135 spectrum (125.8 MHz, CD2Cl2) of complex 3d.

    Fig. S48. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3e.

    Fig. S49. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3e.

    Fig. S50. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3e.

    Fig. S51. Two-dimensional 1H-13C HSQC spectrum for complex 3e in CD2Cl2.

    Fig. S52. Two-dimensional 1H-13C HMBC spectrum for complex 3e in CD2Cl2.

    Fig. S53. DEPT-135 spectrum (125.8 MHz, CD2Cl2) of complex 3e.

    Table S1. Calculated absorption spectral data for 3a.

    Table S2. Comparison of bond lengths in 3c from the B3LYP functional and experimental data.

    Data file S1. CIF files for complexes 2′.

    Data file S2. CIF files for complexes 3c.

    References (4156)

  • Supplementary Materials

    The PDFset includes:

    • Supplementary Information Text
    • Synthetic Procedures
    • Cartesian coordinate-optimized structures for calculation
    • Fig. S1. 31P{1H} NMR spectrum of the starting material, complex 2, and the in situ 31P NMR spectra for the reaction of 2 with azide at room temperature.
    • Fig. S2. ACID isosurface of the model 3′ from the contribution of eight π-MOs.
    • Fig. S3. Positive-ion ESI-MS spectrum of 2+ C71H56O3OsP3+ measured in dichloromethane.
    • Fig. S4. Positive-ion ESI-MS spectrum of 2′+ C71H56O3OsP3+ measured in dichloromethane.
    • Fig. S5. Positive-ion ESI-MS spectrum of 3a+ C78H63N3O3OsP3+ measured in dichloromethane.
    • Fig. S6. Positive-ion ESI-MS spectrum of 3b+ C77H61N3O3OsP3+ measured in dichloromethane.
    • Fig. S7. Positive-ion ESI-MS spectrum of 3c+ C78H63N3O4OsP3+ measured in dichloromethane.
    • Fig. S8. Positive-ion ESI-MS spectrum of 3d+ C78H60F3N3O3OsP3+ measured in dichloromethane.
    • Fig. S9. Positive-ion ESI-MS spectrum of 3e+ C76H67N3O5OsP3+ measured in dichloromethane.
    • Fig. S10. 1H NMR (600.1 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 2.
    • Fig. S11. 31P{1H} NMR (242.9 MHz, CD2Cl2) spectrum for complex 2.
    • Fig. S12. 13C{1H} NMR (150.9 MHz, CD2Cl2) spectrum for complex 2.
    • Fig. S13. Two-dimensional 1H-13C HSQC spectrum for complex 2 in CD2Cl2.
    • Fig. S14. Two-dimensional 1H-13C HMBC spectrum for complex 2 in CD2Cl2.
    • Fig. S15. DEPT-135 spectrum (150.9 MHz, CD2Cl2) of complex 2.
    • Fig. S16. 1H NMR (600.1 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 2′.
    • Fig. S17. 31P{1H} NMR (242.9 MHz, CD2Cl2) spectrum for complex 2′.
    • Fig. S18. 13C{1H} NMR (150.9 MHz, CD2Cl2) spectrum for complex 2′.
    • Fig. S19. Two-dimensional 1H-13C HSQC spectrum for complex 2′ in CD2Cl2.
    • Fig. S20. Two-dimensional 1H-13C HMBC spectrum for complex 2′ in CD2Cl2.
    • Fig. S21. DEPT-135 spectrum (150.9 MHz, CD2Cl2) of complex 2′.
    • Fig. S22. 11B{1H} NMR (192.5 MHz, CD2Cl2) spectrum for complex 2′.
    • Fig. S23. 1H NMR (500.2 MHz, CDCl3) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3a.
    • Fig. S24. 31P{1H} NMR (202.5 MHz, CDCl3) spectrum for complex 3a.
    • Fig. S25. 13C{1H} NMR (125.8 MHz, CDCl3) spectrum for complex 3a.
    • Fig. S26. Two-dimensional 1H-13C HSQC spectrum for complex 3a in CDCl3.
    • Fig. S27. Two-dimensional 1H-13C HMBC spectrum for complex 3a in CDCl3.
    • Fig. S28. DEPT-135 spectrum (125.8 MHz, CDCl3) of complex 3a.
    • Fig. S29. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3b.
    • Fig. S30. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3b.
    • Fig. S31. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3b.
    • Fig. S32. Two-dimensional 1H-13C HSQC spectrum for complex 3b in CD2Cl2.
    • Fig. S33. Two-dimensional 1H-13C HMBC spectrum for complex 3b in CD2Cl2.
    • Fig. S34. DEPT-135 spectrum (125.8 MHz, CD2Cl2) of complex 3b.
    • Fig. S35. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3c.
    • Fig. S36. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3c.
    • Fig. S37. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3c.
    • Fig. S38. Two-dimensional 1H-13C HSQC spectrum for complex 3c in CD2Cl2.
    • Fig. S39. Two-dimensional 1H-13C HMBC spectrum for complex 3c in CD2Cl2.
    • Fig. S40. DEPT-135 spectrum (125.8 MHz) of complex 3c.
    • Fig. S41. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3d.
    • Fig. S42. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3d.
    • Fig. S43. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3d.
    • Fig. S44. 19F{1H} NMR (376.4 MHz, CD2Cl2) spectrum for complex 3d.
    • Fig. S45. Two-dimensional 1H-13C HSQC spectrum for complex 3d in CD2Cl2.
    • Fig. S46. Two-dimensional 1H-13C HMBC spectrum for complex 3d in CD2Cl2.
    • Fig. S47. DEPT-135 spectrum (125.8 MHz, CD2Cl2) of complex 3d.
    • Fig. S48. 1H NMR (500.2 MHz, CD2Cl2) spectrum (inset: partial 1H-13C HSQC spectrum) for complex 3e.
    • Fig. S49. 31P{1H} NMR (202.5 MHz, CD2Cl2) spectrum for complex 3e.
    • Fig. S50. 13C{1H} NMR (125.8 MHz, CD2Cl2) spectrum for complex 3e.
    • Fig. S51. Two-dimensional 1H-13C HSQC spectrum for complex 3e in CD2Cl2.
    • Fig. S52. Two-dimensional 1H-13C HMBC spectrum for complex 3e in CD2Cl2.
    • Fig. S53. DEPT-135 spectrum (125.8 MHz, CD2Cl2) of complex 3e.
    • Table S1. Calculated absorption spectral data for 3a.
    • Table S2. Comparison of bond lengths in 3c from the B3LYP functional and experimental data.
    • References (4156)

    Download PDF

    Other Supplementary Material for this manuscript includes the following:

    Files in this Data Supplement:

Stay Connected to Science Advances

Navigate This Article