Imaging an unsupported metal–metal bond in dirhenium molecules at the atomic scale

See allHide authors and affiliations

Science Advances  17 Jan 2020:
Vol. 6, no. 3, eaay5849
DOI: 10.1126/sciadv.aay5849


Metallic bonds remain one of the most important and least understood of the chemical bonds. In this study, we generated Re2 molecules in which the Re–Re core is unsupported by ligands. Real-time imaging of the atomic-scale dynamics of Re2 adsorbed on a graphitic lattice allows direct measurement of Re–Re bond lengths for individual molecules that changes in discrete steps correlating with bond order from one to four. Direct imaging of the Re–Re bond breaking process reveals a new bonding state with the bond order less than one and a high-amplitude vibrational stretch, preceding the bond dissociation. The methodology, based on aberration-corrected transmission electron microscopy imaging, is shown to be a powerful analytical tool for the investigation of dynamics of metallic bonding at the atomic level.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances