Research ArticleSPACE SCIENCES

Turbulence in the Sun is suppressed on large scales and confined to equatorial regions

See allHide authors and affiliations

Science Advances  22 Jul 2020:
Vol. 6, no. 30, eaba9639
DOI: 10.1126/sciadv.aba9639


Convection in the Sun’s outer envelope generates turbulence and drives differential rotation, meridional circulation, and the global magnetic cycle. We develop a greater understanding of these processes by contrasting observations with simulations of global convection. These comparisons also enhance our comprehension of the physics of distant Sun-like stars. Here, we infer toroidal flow power as a function of wave number, frequency, and depth in the solar interior through helioseismic analyses of space-based observations. The inferred flows grow with spatial wave number and temporal frequency and are confined to low latitudes, supporting the argument that rotation induces systematic differences between the poles and equator. In contrast, the simulations used here show the opposite trends—power diminishing with increasing wave number and frequency while flow amplitudes become weakest at low latitudes. These differences highlight gaps in our understanding of solar convection and point to challenges ahead.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances