Research ArticleGEOCHEMISTRY

Crustal thickening and endogenic oxidation of magmatic sulfur

See allHide authors and affiliations

Science Advances  29 Jul 2020:
Vol. 6, no. 31, eaba6342
DOI: 10.1126/sciadv.aba6342


Porphyry ore deposits, Earth’s most important resources of copper, molybdenum, and rhenium, are strongly associated with felsic magmas showing signs of high-pressure differentiation and are usually found in places with thickened crust (>45 kilometers). This pattern is well-known, but unexplained, and remains an outstanding problem in our understanding of porphyry ore deposit formation. We approach this problem by investigating the oxidation state of magmatic sulfur, which controls the behavior of ore-forming metals during magma differentiation and magmatic-hydrothermal transition. We use sulfur in apatite to reconstruct the sulfur oxidation state in the Gangdese batholith, southern Tibet. We find that magma sulfate content increased abruptly after India-Eurasia collision. Apatite sulfur content and the calculated magma S6+/ΣS ratio correlate with whole-rock dysprosium/ytterbium ratio, suggesting that residual garnet, favored in thickened crust, exerts a first-order control on sulfur oxidation in magmatic orogens. Our findings link sulfur oxidation to internal petrogenic processes and imply an intrinsic relationship of magma oxidation with synmagmatic crustal thickening.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances