Traveling and standing waves mediate pattern formation in cellular protrusions

See allHide authors and affiliations

Science Advances  07 Aug 2020:
Vol. 6, no. 32, eaay7682
DOI: 10.1126/sciadv.aay7682


The mechanisms regulating protrusions during amoeboid migration exhibit excitability. Theoretical studies have suggested the possible coexistence of traveling and standing waves in excitable systems. Here, we demonstrate the direct transformation of a traveling into a standing wave and establish conditions for the stability of this conversion. This theory combines excitable wave stopping and the emergence of a family of standing waves at zero velocity, without altering diffusion parameters. Experimentally, we show the existence of this phenomenon on the cell cortex of some Dictyostelium and mammalian mutant strains. We further predict a template that encompasses a spectrum of protrusive phenotypes, including pseudopodia and filopodia, through transitions between traveling and standing waves, allowing the cell to switch between excitability and bistability. Overall, this suggests that a previously-unidentified method of pattern formation, in which traveling waves spread, stop, and turn into standing waves that rearrange to form stable patterns, governs cell motility.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances