Research ArticlePHYSICS

Vortices as Brownian particles in turbulent flows

See allHide authors and affiliations

Science Advances  19 Aug 2020:
Vol. 6, no. 34, eaaz1110
DOI: 10.1126/sciadv.aaz1110

Abstract

Brownian motion of particles in fluid is the most common form of collective behavior in physical and biological systems. Here, we demonstrate through both experiment and numerical simulation that the movement of vortices in a rotating turbulent convective flow resembles that of inertial Brownian particles, i.e., they initially move ballistically and then diffusively after certain critical time. Moreover, the transition from ballistic to diffusive behaviors is direct, as predicted by Langevin, without first going through the hydrodynamic memory regime. The transitional timescale and the diffusivity of the vortices can be collapsed excellently onto a master curve for all explored parameters. In the spatial domain, however, the vortices exhibit organized structures, as if they are performing tethered random motion. Our results imply that the convective vortices have inertia-induced memory such that their short-term movement can be predicted and their motion can be well described in the framework of Brownian motions.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances