Floquet metal-to-insulator phase transitions in semiconductor nanowires

See allHide authors and affiliations

Science Advances  26 Aug 2020:
Vol. 6, no. 35, eaay4922
DOI: 10.1126/sciadv.aay4922


We study steady states of semiconductor nanowires subjected to strong resonant time-periodic drives. The steady states arise from the balance between electron-phonon scattering, electron-hole recombination via photoemission, and Auger scattering processes. We show that tuning the strength of the driving field drives a transition between an electron-hole metal (EHM) phase and a Floquet insulator (FI) phase. We study the critical point controlling this transition. The EHM-to-FI transition can be observed by monitoring the presence of peaks in the density-density response function, which are associated with the Fermi momentum of the EHM phase and are absent in the FI phase. Our results may help guide future studies toward inducing exotic nonequilibrium phases of matter by periodic driving.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances