Research ArticleMATERIALS SCIENCE

Predicting short-range order and correlated phenomena in disordered crystalline materials

See allHide authors and affiliations

Science Advances  28 Aug 2020:
Vol. 6, no. 35, eabc2758
DOI: 10.1126/sciadv.abc2758

Abstract

Disordered crystalline materials are used in a wide variety of energy-related technologies. Recent results from neutron total scattering experiments have shown that the atomic arrangements of many disordered crystalline materials are not random nor are they represented by the long-range structure observed from diffraction experiments. Despite the importance of disordered materials and the impact of disorder on the expression of physical properties, the underlying fundamental atomic-scale rules of disordering are not currently well understood. Here, we report that heterogeneous disordering (and associated structural distortions) can be understood by the straightforward application of Pauling’s rules (1929). This insight, corroborated by first principles calculations, can be used to predict the short-range, atomic-scale changes that result from structural disordering induced by extreme conditions associated with energy-related applications, such as high temperature, high pressure, and intense radiation fields.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances