Regulating the absorption spectrum of polydopamine

See allHide authors and affiliations

Science Advances  04 Sep 2020:
Vol. 6, no. 36, eabb4696
DOI: 10.1126/sciadv.abb4696


Polydopamine (PDA) has been increasingly exploited as an advanced functional material, and its emergent light absorption property plays a crucial role in determining various utilizations. However, the rational design and efficient regulation of PDA absorption property remain a challenge due to the complex structure within PDA. In this work, we propose a facile method to regulate the light absorption behaviors of PDA by constructing donor-acceptor pairs within the microstructures through the chemical connections between indoledihydroxy/indolequinone and their oligomers with 2,2,6,6-tetramethylpiperidine-1-oxyl moiety. The detailed structural and spectral analysis, as well as the density functional theory simulation, further confirms the existence of donor-acceptor molecular pair structures, which could decrease the energy bandgap and increase the electron delocalization for enhancing light absorption across a broad spectrum. These rationally designed PDA nanoparticles with tunable absorption properties also show improved total photothermal effect and demonstrate excellent performances in solar desalination.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances