Research ArticleCONDENSED MATTER PHYSICS

Highly energy-tunable quantum light from moiré-trapped excitons

See allHide authors and affiliations

Science Advances  11 Sep 2020:
Vol. 6, no. 37, eaba8526
DOI: 10.1126/sciadv.aba8526

Abstract

Photon antibunching, a hallmark of quantum light, has been observed in the correlations of light from isolated atomic and atomic-like solid-state systems. Two-dimensional semiconductor heterostructures offer a unique method to create a quantum light source: Moiré trapping potentials for excitons are predicted to create arrays of quantum emitters. While signatures of moiré-trapped excitons have been observed, their quantum nature has yet to be confirmed. Here, we report photon antibunching from single moiré-trapped interlayer excitons in a heterobilayer. Via magneto-optical spectroscopy, we demonstrate that the discrete anharmonic spectra arise from bound band-edge electron-hole pairs trapped in moiré potentials. Last, we exploit the large permanent dipole of interlayer excitons to achieve large direct current (DC) Stark tuning up to 40 meV. Our results confirm the quantum nature of moiré-confined excitons and open opportunities to investigate their inhomogeneity and interactions between the emitters or energetically tune single emitters into resonance with cavity modes.

https://creativecommons.org/licenses/by/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances