High-frequency magnetoacoustic resonance through strain-spin coupling in perpendicular magnetic multilayers

See allHide authors and affiliations

Science Advances  18 Sep 2020:
Vol. 6, no. 38, eabb4607
DOI: 10.1126/sciadv.abb4607


It is desirable to experimentally demonstrate an extremely high resonant frequency, assisted by strain-spin coupling, in technologically important perpendicular magnetic materials for device applications. Here, we directly observe the coupling of magnons and phonons in both time and frequency domains upon femtosecond laser excitation. This strain-spin coupling leads to a magnetoacoustic resonance in perpendicular magnetic [Co/Pd]n multilayers, reaching frequencies in the extremely high frequency (EHF) band, e.g., 60 GHz. We propose a theoretical model to explain the physical mechanism underlying the strain-spin interaction. Our model explains the amplitude increase of the magnetoacoustic resonance state with time and quantitatively predicts the composition of the combined strain-spin state near the resonance. We also detail its precise dependence on the magnetostriction. The results of this work offer a potential pathway to manipulating both the magnitude and timing of EHF and strongly coupled magnon-phonon excitations.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances