Research ArticleOPTICS

Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

See allHide authors and affiliations

Science Advances  23 Sep 2020:
Vol. 6, no. 39, eaba9186
DOI: 10.1126/sciadv.aba9186

Abstract

We report demonstrations of both quadrature-squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number–resolving transition-edge sensors. We measure 1.0(1) decibels of broadband quadrature squeezing (~4 decibels inferred on-chip) and 1.5(3) decibels of photon number difference squeezing (~7 decibels inferred on-chip). Nearly single temporal mode operation is achieved, with measured raw unheralded second-order correlations g(2) as high as 1.95(1). Multiphoton events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances