Research ArticleCONDENSED MATTER PHYSICS

Magnetic Hamiltonian parameter estimation using deep learning techniques

See allHide authors and affiliations

Science Advances  25 Sep 2020:
Vol. 6, no. 39, eabb0872
DOI: 10.1126/sciadv.abb0872

Abstract

Understanding spin textures in magnetic systems is extremely important to the spintronics and it is vital to extrapolate the magnetic Hamiltonian parameters through the experimentally determined spin. It can provide a better complementary link between theories and experimental results. We demonstrate deep learning can quantify the magnetic Hamiltonian from magnetic domain images. To train the deep neural network, we generated domain configurations with Monte Carlo method. The errors from the estimations was analyzed with statistical methods and confirmed the network was successfully trained to relate the Hamiltonian parameters with magnetic structure characteristics. The network was applied to estimate experimentally observed domain images. The results are consistent with the reported results, which verifies the effectiveness of our methods. On the basis of our study, we anticipate that the deep learning techniques make a bridge to connect the experimental and theoretical approaches not only in magnetism but also throughout any scientific research.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances