Cargo capture and transport by colloidal swarms

See allHide authors and affiliations

Science Advances  24 Jan 2020:
Vol. 6, no. 4, eaay7679
DOI: 10.1126/sciadv.aay7679


Controlling active colloidal particle swarms could enable useful microscopic functions in emerging applications at the interface of nanotechnology and robotics. Here, we present a computational study of controlling self-propelled colloidal particle propulsion speeds to cooperatively capture and transport cargo particles, which otherwise produce random dispersions. By sensing swarm and cargo coordinates, each particle’s speed is actuated according to a control policy based on multiagent assignment and path planning strategies that navigate stochastic particle trajectories to targets around cargo. Colloidal swarms are shown to dynamically cage cargo at their center via inward radial forces while simultaneously translating via directional forces. Speed, power, and efficiency of swarm tasks display emergent coupled dependences on swarm size and pair interactions and approach asymptotic limits indicating near-optimal performance. This scheme exploits unique interactions and stochastic dynamics in colloidal swarms to capture and transport microscopic cargo in a robust, stable, error-tolerant, and dynamic manner.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances