Research ArticleOPTICS

Mechanical decoupling of quantum emitters in hexagonal boron nitride from low-energy phonon modes

See allHide authors and affiliations

Science Advances  30 Sep 2020:
Vol. 6, no. 40, eaba6038
DOI: 10.1126/sciadv.aba6038

Abstract

Quantum emitters in hexagonal boron nitride were recently reported to hold unusual narrow homogeneous linewidths of tens of megahertz within the Fourier transform limit at room temperature. This unique observation was traced back to decoupling from in-plane phonon modes. Here, we investigate the origins for the mechanical decoupling. New sample preparation improved spectral diffusion, which allowed us to reveal a gap in the electron-phonon spectral density for low phonon frequencies. This sign for mechanical decoupling persists up to room temperature and explains the observed narrow lines at 300 kelvin. We investigate the dipole emission directionality and reveal preferred photon emission through channels between the layers supporting the claim for out-of-plane distorted defect centers. Our work provides insights into the underlying physics for the persistence of Fourier transform limit lines up to room temperature and gives a guide to the community on how to identify the exotic emitters.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances