Research ArticlePHYSICS

Sound vortex diffraction via topological charge in phase gradient metagratings

See allHide authors and affiliations

Science Advances  02 Oct 2020:
Vol. 6, no. 40, eaba9876
DOI: 10.1126/sciadv.aba9876


Wave fields with orbital angular momentum (OAM) have been widely investigated in metasurfaces. By engineering acoustic metasurfaces with phase gradient elements, phase twisting is commonly used to obtain acoustic OAM. However, it has limited ability to manipulate sound vortices, and a more powerful mechanism for sound vortex manipulation is strongly desired. Here, we propose the diffraction mechanism to manipulate sound vortices in a cylindrical waveguide with phase gradient metagratings (PGMs). A sound vortex diffraction law is theoretically revealed based on the generalized conservation principle of topological charge. This diffraction law can explain and predict the complicated diffraction phenomena of sound vortices, as confirmed by numerical simulations. To exemplify our findings, we designed and experimentally verified a PGM based on Helmholtz resonators that support asymmetric transmission of sound vortices. Our work provides previously unidentified opportunities for manipulating sound vortices, which can advance more versatile design for OAM-based devices.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances