Research ArticleCONDENSED MATTER PHYSICS

Nonreciprocal thermal transport in a multiferroic helimagnet

See allHide authors and affiliations

Science Advances  30 Sep 2020:
Vol. 6, no. 40, eabd3703
DOI: 10.1126/sciadv.abd3703

Abstract

Breaking of spatial inversion symmetry induces unique phenomena in condensed matter. In particular, by combining this symmetry with magnetic fields or another type of time-reversal symmetry breaking, noncentrosymmetric materials can be made to exhibit nonreciprocal responses, which are responses that differ for rightward and leftward stimuli. However, the effect of spatial inversion symmetry breaking on thermal transport in uniform media remains to be elucidated. Here, we show nonreciprocal thermal transport in the multiferroic helimagnet TbMnO3. The longitudinal thermal conductivity depends on whether the thermal current is parallel or antiparallel to the vector product of the electric polarization and magnetization. This phenomenon is thermal rectification that is controllable with external fields in a uniform crystal. This discovery may pave the way to thermal diodes with controllability and scalability.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances