Research ArticleCLIMATOLOGY

Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka

See allHide authors and affiliations

Science Advances  07 Oct 2020:
Vol. 6, no. 41, eaba4823
DOI: 10.1126/sciadv.aba4823

Abstract

The quest of geological proxies to evaluate low-latitude hydrological changes at a planetary scale remains an ongoing issue. The Dole effect is such a potential proxy owing to its global character. We propose a new approach to recalculate the fluctuation of the Dole effect (∆DE*) over the past 800 thousand years (ka). The ∆DE* calculated this way is dominated by precession cycles alone, with lesser variance in the obliquity bands and almost no variance in the eccentricity bands. Moreover, the ∆DE* is notably correlated with Chinese stalagmite δ18O record over the past 640 ka; simulated terrestrial rainfall changes between 30°N and 30°S over the past 300 ka. Our findings highlight the predominant role of the low-latitude hydroclimate in governing the ∆DE* on orbital time scales, while high-latitude climate impacts are negligible. In turn, we argue that the ∆DE* can be used to indicate low-latitude hydrological changes at a global extent.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances