Abstract
Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Particularly, it is perplexing why compact Helmholtz layers often show bell-shaped differential capacitances on metal electrodes, as this would suggest a negative capacitance in some layer of interface water. Here, we report state-of-the-art ab initio molecular dynamics simulations of electrified Pt(111)/water interfaces, aiming at unraveling the structure and capacitive behavior of interface water. Our calculation reproduces the bell-shaped differential Helmholtz capacitance and shows that the interface water follows the Frumkin adsorption isotherm when varying the electrode potential, leading to a peculiar negative capacitive response. Our work provides valuable insight into the structure and capacitance of interface water, which can help understand important processes in electrocatalysis and energy storage in supercapacitors.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.