Harnessing the topotactic transition in oxide heterostructures for fast and high-efficiency electrochromic applications

See allHide authors and affiliations

Science Advances  09 Oct 2020:
Vol. 6, no. 41, eabb8553
DOI: 10.1126/sciadv.abb8553


Mobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm2 C−1, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching. By tracking the color propagation, oxygen vacancy mobility can be estimated to be 10−8 cm2 s−1 V−1 near 300°C, which is a giant value attained due to the mosaic pseudomonoclinic film stabilized on LaAlO3 substrate. First-principles calculations reveal that the defect density modulation associated with hole charge injection causes a prominent change in electron correlation, resulting in the light absorption modulation. Our findings will pave the pathway for practical topotactic electrochromic applications.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances