Electrochemically mediated gating membrane with dynamically controllable gas transport

See allHide authors and affiliations

Science Advances  16 Oct 2020:
Vol. 6, no. 42, eabc1741
DOI: 10.1126/sciadv.abc1741


The regulation of mass transfer across membranes is central to a wide spectrum of applications. Despite numerous examples of stimuli-responsive membranes for liquid-phase species, this goal remains elusive for gaseous molecules. We describe a previously unexplored gas gating mechanism driven by reversible electrochemical metal deposition/dissolution on a conductive membrane, which can continuously modulate the interfacial gas permeability over two orders of magnitude with high efficiency and short response time. The gating mechanism involves neither moving parts nor dead volume and can therefore enable various engineering processes. An electrochemically mediated carbon dioxide concentrator demonstrates proof of concept by integrating the gating membranes with redox-active sorbents, where gating effectively prevented the cross-talk between feed and product gas streams for high-efficiency, directional carbon dioxide pumping. We anticipate our concept of dynamically regulating transport at gas-liquid interfaces to broadly inspire systems in fields of gas separation, miniaturized devices, multiphase reactors, and beyond.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances