Scalable microresonators for room-temperature detection of electron spin resonance from dilute, sub-nanoliter volume solids

See allHide authors and affiliations

Science Advances  28 Oct 2020:
Vol. 6, no. 44, eabb0620
DOI: 10.1126/sciadv.abb0620


We report a microresonator platform that allows room temperature detection of electron spins in volumes on the order of 100 pl, and demonstrate its utility to study low levels of dopants in perovskite oxides. We exploit the toroidal moment in a planar anapole, using a single unit of an anapole metamaterial architecture to produce a microwave resonance exhibiting a spatially confined magnetic field hotspot and simultaneously high quality-factor (Q-factor). To demonstrate the broad implementability of this design and its scalability to higher frequencies, we deploy the microresonators in a commercial electron paramagnetic resonance (EPR) spectrometer operating at 10 GHz and a NIST-built EPR spectrometer operating at 35 GHz. We report continuous-wave (CW) EPR spectra for various samples, including a dilute Mn2+-doped perovskite oxide, CaTiO3, and a transition metal complex, CuCl2.2H2O. The anapole microresonator presented here is expected to enable multifrequency EPR characterization of dopants and defects in perovskite oxide microcrystals and other volume-limited materials of technological importance.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances