Designing spontaneous behavioral switching via chaotic itinerancy

See allHide authors and affiliations

Science Advances  11 Nov 2020:
Vol. 6, no. 46, eabb3989
DOI: 10.1126/sciadv.abb3989


Chaotic itinerancy is a frequently observed phenomenon in high-dimensional nonlinear dynamical systems and is characterized by itinerant transitions among multiple quasi-attractors. Several studies have pointed out that high-dimensional activity in animal brains can be observed to exhibit chaotic itinerancy, which is considered to play a critical role in the spontaneous behavior generation of animals. Thus, how to design desired chaotic itinerancy is a topic of great interest, particularly for neurorobotics researchers who wish to understand and implement autonomous behavioral controls. However, it is generally difficult to gain control over high-dimensional nonlinear dynamical systems. In this study, we propose a method for implementing chaotic itinerancy reproducibly in a high-dimensional chaotic neural network. We demonstrate that our method enables us to easily design both the trajectories of quasi-attractors and the transition rules among them simply by adjusting the limited number of system parameters and by using the intrinsic high-dimensional chaos.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances