Research ArticleMATERIALS SCIENCE

Electronic quality factor for thermoelectrics

See allHide authors and affiliations

Science Advances  13 Nov 2020:
Vol. 6, no. 46, eabc0726
DOI: 10.1126/sciadv.abc0726

Abstract

Development of thermoelectrics usually involves trial-and-error investigations, including time-consuming synthesis and measurements. Here, we identify the electronic quality factor BE for determining the maximum thermoelectric power factor, which can be conveniently estimated by a single measurement of Seebeck coefficient and electrical conductivity of only one sample, not necessarily optimized, at an arbitrary temperature. We demonstrate that thousands of experimental measurements in dozens of materials can all be described by a universal curve and a single material parameter BE for each class of materials. Furthermore, any deviation in BE with temperature or doping indicated new effects such as band convergence or additional scattering. This makes BE a powerful tool for evaluating and guiding the development of thermoelectrics. We demonstrate the power of BE to show both p-type GeTe alloys and n-type Mg3SbBi alloys as highly competitive materials, at near room temperature, to state-of-the-art Bi2Te3 alloys used in nearly all commercial applications.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances