Research ArticleATMOSPHERIC SCIENCE

On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica

See allHide authors and affiliations

Science Advances  11 Nov 2020:
Vol. 6, no. 46, eabc2695
DOI: 10.1126/sciadv.abc2695

Abstract

This study reports the occurrence of intense atmospheric rivers (ARs) during the two large Weddell Polynya events in November 1973 and September 2017 and investigates their role in the opening events via their enhancement of sea ice melt. Few days before the polynya openings, persistent ARs maintained a sustained positive total energy flux at the surface, resulting in sea ice thinning and a decline in sea ice concentration in the Maud Rise region. The ARs were associated with anomalously high amounts of total precipitable water and cloud liquid water content exceeding 3 SDs above the climatological mean. The above-normal integrated water vapor transport (IVT above the 99th climatological percentile), as well as opaque cloud bands, warmed the surface (+10°C in skin and air temperature) via substantial increases (+250 W m−2) in downward longwave radiation and advection of warm air masses, resulting in sea ice melt and inhibited nighttime refreezing.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances