Research ArticleBIOCHEMISTRY

Assembly of the algal CO2-fixing organelle, the pyrenoid, is guided by a Rubisco-binding motif

See allHide authors and affiliations

Science Advances  11 Nov 2020:
Vol. 6, no. 46, eabd2408
DOI: 10.1126/sciadv.abd2408

Abstract

Approximately one-third of the Earth’s photosynthetic CO2 assimilation occurs in a pyrenoid, an organelle containing the CO2-fixing enzyme Rubisco. How constituent proteins are recruited to the pyrenoid and how the organelle’s subcompartments—membrane tubules, a surrounding phase-separated Rubisco matrix, and a peripheral starch sheath—are held together is unknown. Using the model alga Chlamydomonas reinhardtii, we found that pyrenoid proteins share a sequence motif. We show that the motif is necessary and sufficient to target proteins to the pyrenoid and that the motif binds to Rubisco, suggesting a mechanism for targeting. The presence of the Rubisco-binding motif on proteins that localize to the tubules and on proteins that localize to the matrix–starch sheath interface suggests that the motif holds the pyrenoid’s three subcompartments together. Our findings advance our understanding of pyrenoid biogenesis and illustrate how a single protein motif can underlie the architecture of a complex multilayered phase-separated organelle.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances