Abstract
Spin waves—the elementary excitations of magnetic materials—are prime candidate signal carriers for low-dissipation information processing. Being able to image coherent spin-wave transport is crucial for developing interference-based spin-wave devices. We introduce magnetic resonance imaging of the microwave magnetic stray fields that are generated by spin waves as a new approach for imaging coherent spin-wave transport. We realize this approach using a dense layer of electronic sensor spins in a diamond chip, which combines the ability to detect small magnetic fields with a sensitivity to their polarization. Focusing on a thin-film magnetic insulator, we quantify spin-wave amplitudes, visualize spin-wave dispersion and interference, and demonstrate time-domain measurements of spin-wave packets. We theoretically explain the observed anisotropic spin-wave patterns in terms of chiral spin-wave excitation and stray-field coupling to the sensor spins. Our results pave the way for probing spin waves in atomically thin magnets, even when embedded between opaque materials.
- Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.