Research ArticleENGINEERING

Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics

See allHide authors and affiliations

Science Advances  13 Nov 2020:
Vol. 6, no. 46, eabd7795
DOI: 10.1126/sciadv.abd7795

Abstract

We report large-scale and multiplexed tactile sensors with submillimeter-scale shear sensation and autonomous and real-time closed-loop grip adjustment. We leveraged dual-gate piezoelectric zinc oxide (ZnO) thin-film transistors (TFTs) fabricated on flexible substrates to record normal and shear forces with high sensitivity over a broad range of forces. An individual ZnO TFT can intrinsically sense, amplify, and multiplex force signals, allowing ease of scalability for multiplexing from hundreds of elements with 100-μm spatial and sub–10-ms temporal resolutions. Notably, exclusive feedback from the tactile sensor array enabled rapid adjustment of grip force to slip, enabling the direct autonomous robotic tactile perception with a single modality. For biomedical and implantable device applications, pulse sensing and underwater flow detection were demonstrated. This robust technology, with its reproducible and reliable performance, can be immediately translated for use in industrial and surgical robotics, neuroprosthetics, implantables, and beyond.

https://creativecommons.org/licenses/by-nc/4.0/

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances