Research ArticleCLIMATOLOGY

Alpine glacier resilience and Neoglacial fluctuations linked to Holocene snowfall trends in the western United States

See allHide authors and affiliations

Science Advances  18 Nov 2020:
Vol. 6, no. 47, eabc7661
DOI: 10.1126/sciadv.abc7661


Geological evidence indicates that glaciers in the western United States fluctuated in response to Holocene changes in temperature and precipitation. However, because moraine chronologies are characteristically discontinuous, Holocene glacier fluctuations and their climatic drivers remain ambiguous, and future glacier changes are uncertain. Here, we construct a continuous 10-thousand-year (ka) record of glacier activity in the Teton Range, Wyoming, using glacial and environmental indicators in alpine lake sediments. We show that Teton glaciers persisted in some form through early Holocene warmth, likely as small debris-covered glaciers or rock glaciers. Subsequent Neoglacial ice expansion began ~6.3 ka, with two prominent glacier maxima at ~2.8 and 0.1 ka that were separated by a multicentennial phase of ice retreat. Comparison with regional paleoclimate records suggests that glacier activity was dominantly controlled by winter precipitation variability superposed on long-term Holocene temperature trends, offering key insights into western U.S. glacier resilience and vulnerability to future warming.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances