Targeted knockdown of Kv1.3 channels in T lymphocytes corrects the disease manifestations associated with systemic lupus erythematosus

See allHide authors and affiliations

Science Advances  18 Nov 2020:
Vol. 6, no. 47, eabd1471
DOI: 10.1126/sciadv.abd1471


Lupus nephritis (LN) is an autoimmune disease with substantial morbidity/mortality and limited efficacy of available therapies. Memory T (Tm) lymphocytes infiltrate LN kidneys, contributing to organ damage. Analysis of LN, diabetic nephropathy, and healthy donor kidney biopsies revealed high infiltration of active CD8+ Tm cells expressing high voltage-dependent Kv1.3 potassium channels—key T cell function regulators—in LN. Nanoparticles that selectively down-regulate Kv1.3 in Tm cells (Kv1.3-NPs) reduced CD40L and interferon-γ (IFNγ) in Tm cells from LN patients in vitro. Kv1.3-NPs were tested in humanized LN mice obtained by engrafting peripheral blood mononuclear cells (PBMCs) from LN patients into immune-deficient mice. LN mice exhibited features of the disease: increased IFNγ and CD3+CD8+ T cell renal infiltration, and reduced survival versus healthy donor PBMC engrafted mice. Kv1.3-NP treatment of patient PBMCs before engraftment decreased CD40L/IFNγ and prolonged survival of LN mice. These data show the potential benefits of targeting Kv1.3 in LN.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances