Research ArticleGEOLOGY

A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary

See allHide authors and affiliations

Science Advances  27 Nov 2020:
Vol. 6, no. 48, eaba4170
DOI: 10.1126/sciadv.aba4170


Large earthquakes (magnitude ≥ 7.0) are rare, especially along slow-slipping plate boundaries. Lack of large earthquakes in the instrumental record enlarges uncertainty of the recurrence time; the recurrence of large earthquakes is generally determined by extrapolation according to a magnitude-frequency relation. We enhance the seismological catalog of the Dead Sea Fault Zone by including a 220,000-year-long continuous large earthquake record based on seismites from the Dead Sea center. We constrain seismic shaking intensities via computational fluid dynamics modeling and invert them for earthquake magnitude. Our analysis shows that the recurrence time of large earthquakes follows a power-law distribution, with a mean of 1400 ± 160 years. This mean recurrence is notable shorter than the previous estimate of 11,000 years for the past 40,000 years. Our unique record confirms a clustered earthquake recurrence pattern and a group-fault temporal clustering model, and reveals an unexpectedly high seismicity rate on a slow-slipping plate boundary.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

View Full Text

Stay Connected to Science Advances